skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harper, Stacey_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Agglomeration of nanoplastics in waters can alter their transport and fate in the environment. Agglomeration behavior of 4 nanoplastics differing in core composition (red- or blue-dyed polystyrene) and surface chemistry (plain or carboxylated poly[methyl methacrylate] [PMMA]) was investigated across a salinity gradient. No agglomeration was observed for carboxylated PMMA at any salinity, whereas the plain PMMA agglomerated at only 1 g/L. Both the red and the blue polystyrene agglomerated at 25 g/L. Results indicate that both composition and surface chemistry can impact how environmental salinity affects plastic nanoparticle agglomeration. Environ Toxicol Chem 2021;40:1820–1826. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Abstract Nanoplastic agglomeration behavior across experimental salinity gradients varies depending on plastic type and surface chemistry. PMMA = poly(methyl methacrylate); PS = polystyrene. 
    more » « less